Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116492, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537579

RESUMO

Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.

2.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481808

RESUMO

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Assuntos
Antineoplásicos , Traumatismo por Reperfusão , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Antineoplásicos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Front Immunol ; 12: 709164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489960

RESUMO

Operational tolerance after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. We performed genome-wide analysis of DNA methylation in peripheral blood mononuclear cells from kidney transplant recipients with chronic rejection and operational tolerance from the Genetic Analysis of Molecular Biomarkers of Immunological Tolerance (GAMBIT) study. Our results showed that both clinical stages diverge in 2737 genes, indicating that each one has a specific methylation signature associated with transplant outcome. We also observed that tolerance is associated with demethylation in genes involved in immune function, including B and T cell activation and Th17 differentiation, while in chronic rejection it is associated with intracellular signaling and ubiquitination pathways. Using co-expression network analysis, we selected 12 genomic regions that are specifically hypomethylated or hypermethylated in tolerant patients. Analysis of these genes in transplanted patients with low dose of steroids showed that these have a similar methylation signature to that of tolerant recipients. Overall, these results demonstrate that methylation analysis can mirror the immune status associated with transplant outcome and provides a starting point for understanding the epigenetic mechanisms associated with tolerance.


Assuntos
Metilação de DNA , Transplante de Rim , Tolerância ao Transplante , Adulto , Idoso , Idoso de 80 Anos ou mais , Rejeição de Enxerto , Humanos , Terapia de Imunossupressão , Transplante de Rim/efeitos adversos , Pessoa de Meia-Idade , Células Th17/imunologia , Adulto Jovem
4.
Oncoimmunology ; 10(1): 1897294, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33796404

RESUMO

B7-H6, a ligand for the NK activating receptor NKp30, has been identified as a biomarker of poor prognosis in several solid cancers. However, little is known about the role of B7-H6 and the mechanisms that control its expression in acute myeloid leukemia (AML). Epigenome modulation, including epigenomic reader dysregulation, is one of the hallmarks of AML. Bromodomain-containing protein 4 (BRD4), the best-known member of the BET family of epigenetic readers, is overexpressed in AML cells and regulates the transcription of genes involved in the pathogenesis of AML, as MYC oncogene. Here, we analyze the role of BRD4 in regulating B7-H6 in AML cells. Results demonstrated that the specific inhibition of BRD4 drastically reduces the expression of B7-H6 in AML cells. Histone acetylation mediated by CBP30/P300 facilitates the binding of BRD4 to the B7-H6 promoter, which recruits the P-TEFb elongation factor that phosphorylates RNA polymerase II, thereby activating B7-H6 transcription. BRD4 also co-bounded with JMJD6 at the distal enhancer of the B7-H6 gene. Metabolic modulation with metformin modifies the acetylation pattern in the B7-H6 promoter, impairing BRD4 binding, thereby inhibiting B7-H6 expression. B7-H6 knockdown induces the apoptosis in HEL-R cell line. Moreover, a high level of B7-H6 expression in AML patients is related to increased BRD4 levels, myelodysplastic-derived AML, and del5q, the two latter being associated with poor prognosis. Our data show that BRD4 is a positive regulator of the pro-tumorigenic molecule B7-H6 and that the blockage of the B7-H6 is a potential therapeutic target for the treatment of AML.


Assuntos
Antígenos B7 , Proteínas de Ciclo Celular , Leucemia Mieloide Aguda , Fatores de Transcrição , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Humanos , Histona Desmetilases com o Domínio Jumonji , Leucemia Mieloide Aguda/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/genética , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752264

RESUMO

Integration of the tumor microenvironment as a fundamental part of the tumorigenic process has undoubtedly revolutionized our understanding of cancer biology. Increasing evidence indicates that neoplastic cells establish a dependency relationship with normal resident cells in the affected tissue and, furthermore, develop the ability to recruit new accessory cells that aid tumor development. In addition to normal stromal and tumor cells, this tumor ecosystem includes an infiltrated immune component that establishes complex interactions that have a critical effect during the natural history of the tumor. The process by which immune cells modulate tumor progression is known as immunoediting, a dynamic process that creates a selective pressure that finally leads to the generation of immune-resistant cells and the inability of the immune system to eradicate the tumor. In this context, the cellular and functional characterization of the immune compartment within the tumor microenvironment will help to understand tumor progression and, ultimately, will serve to create novel prognostic tools and improve patient stratification for cancer treatment. Here we review the impact of the immune system on tumor development, focusing particularly on its clinical implications and the current technologies used to analyze immune cell diversity within the tumor.


Assuntos
Biomarcadores Tumorais/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Comunicação Celular/imunologia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Neoplasias/diagnóstico , Neoplasias/imunologia , Células-Tronco Neoplásicas/imunologia , Prognóstico
6.
Cell Rep ; 29(4): 860-872.e5, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644909

RESUMO

In recent years, the macrophage colony-stimulating factor (M-CSF) and granulocyte-macrophage CSF (GM-CSF) cytokines have been identified as opposing regulators of the inflammatory program. However, the two cytokines are simultaneously present in the inflammatory milieu, and it is not clear how cells integrate these signals. In order to understand the regulatory networks associated with the GM/M-CSF signaling axis, we analyzed DNA methylation in human monocytes. Our results indicate that GM-CSF induces activation of the inflammatory program and extensive DNA methylation changes, while M-CSF-polarized cells are in a less differentiated state. This inflammatory program is mediated via JAK2 associated with the GM-CSF receptor and the downstream extracellular signal-regulated (ERK) signaling. However, PI3K signaling is associated with a negative regulatory loop of the inflammatory program and M-CSF autocrine signaling in GM-CSF-polarized monocytes. Our findings describe the regulatory networks associated with the GM/M-CSF signaling axis and how they contribute to the establishment of the inflammatory program associated with monocyte activation.


Assuntos
Metilação de DNA , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Adulto , Células Cultivadas , Humanos , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 2/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
7.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923829

RESUMO

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Assuntos
Apoptose , Diferenciação Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/genética , Epigênese Genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Processamento de Proteína Pós-Traducional , Transcrição Gênica
8.
Front Immunol ; 10: 2951, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998288

RESUMO

Macrophage activation and polarization are closely linked with metabolic rewiring, which is required to sustain their biological functions. These metabolic alterations allow the macrophages to adapt to the microenvironment changes associated with inflammation or tissue damage (hypoxia, nutrient imbalance, oxidative stress, etc.) and to fulfill their highly energy-demanding proinflammatory and anti-microbial functions. This response is integrated via metabolic sensors that coordinate these metabolic fluxes with their functional requirements. Here we review how the metabolic and phenotypic plasticity of macrophages are intrinsically connected with the hypoxia stress sensors and the unfolded protein response in the endoplasmic reticulum, and how these molecular pathways participate in the maladaptive polarization of macrophages in human pathology and chronic inflammation.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hipóxia/fisiopatologia , Macrófagos/fisiologia , Animais , Humanos , Inflamação/fisiopatologia , Ativação de Macrófagos/fisiologia , Transdução de Sinais/fisiologia
9.
Front Immunol ; 9: 2181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319636

RESUMO

The positive long-term effects of conversion to everolimus (EVL) after heart transplantation (HT) have been evaluated in several studies. However, the timing of EVL initiation, the best way to combine it with other immunosuppressive treatments, and the impact of these combinations on the immune response are poorly understood aspects. Here, we analyzed the immune phenotype and function of HT patients (n = 56) at short and long terms (prospective and retrospective cohorts), taking into account the time of EVL initiation: early (3 months post-transplant, EVL-E group) or late (>1 year post-transplant, EVL-L group) compared with mycophenolate mofetil treatment (MMF group). We show that early EVL conversion from MMF allows the increase of cytotoxic (CD56dim CD16+) NK and effector-memory (EM, CD45RA- CCR7-) CD8+ T cell subsets, which show a significantly higher level of expression of cytotoxic molecules, IFN-γ production and degranulation ability under activation. NK cell expansion is accompanied by an altered balance of receptor expression, increasing the activation state, and lytic activity of those cells. Those changes are detected after as little as 1 month after EVL conversion in association with the expansion of regulatory T cells and the decrease in B cell frequency. However, no changes in the immune cells subsets were observed after late EVL initiation (EVL-L) compared with the MMF group. Our results imply that only early EVL conversion induces key changes in the post-transplant immune response, preserving an efficient anti-viral response, but simultaneously showing a limited ability to counteract the cytotoxic response to the allograft.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Everolimo/administração & dosagem , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Imunossupressores/administração & dosagem , Células Matadoras Naturais/imunologia , Adolescente , Adulto , Idoso , Aloenxertos/efeitos dos fármacos , Aloenxertos/imunologia , Cardiomiopatia Dilatada/cirurgia , Feminino , Rejeição de Enxerto/imunologia , Coração/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Micofenólico/administração & dosagem , Miocárdio/imunologia , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
11.
Oncotarget ; 8(19): 31959-31976, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28404876

RESUMO

Acute myeloid leukemia (AML) is a disease with great morphological and genetic heterogeneity, which complicates its prognosis and treatment. The hypomethylating agents azacitidine (Vidaza®, AZA) and decitabine (Dacogen®, DAC) have been approved for the treatment of AML patients, but their mechanisms of action are poorly understood. Natural killer (NK) cells play an important role in the recognition of AML blasts through the interaction of the activating NKG2D receptor with its ligands (NKG2DL: MICA/B and ULBPs1-3). However, soluble NKG2DL (sNKG2DL) can be released from the cell surface, impairing immune recognition. Here, we examined whether hypomethylating agents modulate the release of sNKG2DL from AML cells. Results demonstrated that AZA- and DAC-treated AML cells reduce the release of sNKG2DL, preventing downregulation of NKG2D receptor on the cell surface and promoting immune recognition mediated by NKG2D-NKG2DL engagement. We show that the shedding of MICA, MICB and ULBP2 is inhibited by the increased expression of TIMP3, an ADAM17 inhibitor, after DAC treatment. The TIMP3 gene is highly methylated in AML cells lines and in AML patients (25.5%), in which it is significantly associated with an adverse cytogenetic prognosis of the disease. Overall, TIMP3 could be a target of the demethylating treatments in AML patients, leading to a decrease in MICA, MICB and ULBP2 shedding and the enhancement of the lytic activity of NK cells through the immune recognition mediated by the NKG2D receptor.


Assuntos
Metilação de DNA/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Proteína ADAM17/metabolismo , Adulto , Idoso , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Aberrações Cromossômicas , Decitabina , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Prognóstico
12.
Aging Cell ; 16(2): 293-303, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28026094

RESUMO

Aging is associated with a progressive loss of the CD28 costimulatory molecule in CD4+ lymphocytes (CD28null T cells), which is accompanied by the acquisition of new biological and functional properties that give rise to an impaired immune response. The regulatory mechanisms that govern the appearance and function of this cell subset during aging and in several associated inflammatory disorders remain controversial. Here, we present the whole-genome DNA methylation and gene expression profiles of CD28null T cells and its CD28+ counterpart. A comparative analysis revealed that 296 genes are differentially methylated between the two cell subsets. A total of 160 genes associated with cytotoxicity (e.g. GRZB, TYROBP, and RUNX3) and cytokine/chemokine signaling (e.g. CX3CR1, CD27, and IL-1R) are demethylated in CD28null T cells, while 136 de novo-methylated genes matched defects in the TCR signaling pathway (e.g. ITK, TXK, CD3G, and LCK). TCR-landscape analysis confirmed that CD28null T cells have an oligo/monoclonal expansion over the polyclonal background of CD28+ T cells, but feature a Vß family repertoire specific to each individual. We reported that CD28null T cells show a preactivation state characterized by a higher level of expression of inflammasome-related genes that leads to the release of IL-1ß when activated. Overall, our results demonstrate that CD28null T cells have a unique DNA methylation landscape, which is associated with differences in gene expression, contributing to the functionality of these cells. Understanding these epigenetic regulatory mechanisms could suggest novel therapeutic strategies to prevent the accumulation and activation of these cells during aging.


Assuntos
Antígenos CD28/metabolismo , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Senescência Celular/genética , Senescência Celular/imunologia , Metilação de DNA/genética , Genoma Humano , Apoptose/genética , Ilhas de CpG/genética , Citotoxicidade Imunológica , Regulação da Expressão Gênica , Humanos , Imunidade , Inflamassomos/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
13.
J Immunol ; 198(2): 937-949, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974453

RESUMO

Epigenetic mechanisms play a critical role during differentiation of T cells by contributing to the formation of stable and heritable transcriptional patterns. To better understand the mechanisms of memory maintenance in CD8+ T cells, we performed genome-wide analysis of DNA methylation, histone marking (acetylated lysine 9 in histone H3 and trimethylated lysine 9 in histone), and gene-expression profiles in naive, effector memory (EM), and terminally differentiated EM (TEMRA) cells. Our results indicate that DNA demethylation and histone acetylation are coordinated to generate the transcriptional program associated with memory cells. Conversely, EM and TEMRA cells share a very similar epigenetic landscape. Nonetheless, the TEMRA transcriptional program predicts an innate immunity phenotype associated with genes never reported in these cells, including several mediators of NK cell activation (VAV3 and LYN) and a large array of NK receptors (e.g., KIR2DL3, KIR2DL4, KIR2DL1, KIR3DL1, KIR2DS5). In addition, we identified up to 161 genes that encode transcriptional regulators, some of unknown function in CD8+ T cells, and that were differentially expressed in the course of differentiation. Overall, these results provide new insights into the regulatory networks involved in memory CD8+ T cell maintenance and T cell terminal differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Epigênese Genética , Regulação da Expressão Gênica/imunologia , Memória Imunológica/genética , Western Blotting , Separação Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Memória Imunológica/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Transcriptoma
14.
J Am Soc Nephrol ; 28(2): 504-519, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436852

RESUMO

Renal inflammation has a key role in the onset and progression of immune- and nonimmune-mediated renal diseases. Therefore, the search for novel anti-inflammatory pharmacologic targets is of great interest in renal pathology. JQ1, a small molecule inhibitor of bromodomain and extraterminal (BET) proteins, was previously found to preserve renal function in experimental polycystic kidney disease. We report here that JQ1-induced BET inhibition modulated the in vitro expression of genes involved in several biologic processes, including inflammation and immune responses. Gene silencing of BRD4, an important BET protein, and chromatin immunoprecipitation assays showed that JQ1 alters the direct association of BRD4 with acetylated histone-packaged promoters and reduces the transcription of proinflammatory genes (IL-6, CCL-2, and CCL-5). In vivo, JQ1 abrogated experimental renal inflammation in murine models of unilateral ureteral obstruction, antimembrane basal GN, and infusion of Angiotensin II. Notably, JQ1 downregulated the expression of several genes controlled by the NF-κB pathway, a key inflammatory signaling pathway. The RelA NF-κB subunit is activated by acetylation of lysine 310. In damaged kidneys and cytokine-stimulated renal cells, JQ1 reduced the nuclear levels of RelA NF-κB. Additionally, JQ1 dampened the activation of the Th17 immune response in experimental renal damage. Our results show that inhibition of BET proteins reduces renal inflammation by several mechanisms: chromatin remodeling in promoter regions of specific genes, blockade of NF-κB pathway activation, and modulation of the Th17 immune response. These results suggest that inhibitors of BET proteins could have important therapeutic applications in inflammatory renal diseases.


Assuntos
Azepinas/farmacologia , Azepinas/uso terapêutico , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Nefropatias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Triazóis/uso terapêutico , Animais , Proteínas Cromossômicas não Histona/fisiologia , Modelos Animais de Doenças , Nefropatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia
15.
Int J Biochem Cell Biol ; 67: 75-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25975824

RESUMO

T cell lymphopoiesis is a complex, stepwise process in which the transcriptional program of the progenitor cells is progressively adapted in order to generate mature phenotypes. This transcriptional program in differentiated cells is also very flexible, allowing the silencing or activation of critical genes in response to extrinsic or intrinsic stimuli, or, in the case of progenitors, to developmental signals. Thus, progenitor and mature cells must maintain a balance between stability, to preserve their phenotypic identity, and plasticity, to respond and adapt to stimuli. A long-standing question is, therefore, how the transcriptional program is regulated to allow both controlled differentiation and a flexible response. Here we review the contribution of epigenetic mechanisms to transcriptional control during CD4(+) T cell differentiation and the ways in which these mechanisms interact with key transcription factors to ensure proper maturation and maintenance of cell identity. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.


Assuntos
Epigênese Genética/imunologia , Fatores de Transcrição Forkhead/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Linhagem da Célula/imunologia , Metilação de DNA , Fatores de Transcrição Forkhead/imunologia , Expressão Gênica , Humanos , Linfopoese/genética , Linfopoese/imunologia , Regiões Promotoras Genéticas , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Transcrição Gênica
16.
Nucleic Acids Res ; 43(2): 760-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25539926

RESUMO

Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Linfócitos T/imunologia , Transcrição Gênica , Diferenciação Celular/genética , Expressão Gênica , Humanos , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timo/citologia , Timo/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Epigenetics ; 9(4): 566-78, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24445267

RESUMO

The bromodomain and extra terminal (BET) protein family member BRD4 is a transcriptional regulator, critical for cell cycle progression and cellular viability. Here, we show that BRD4 plays an important role in embryonic stem cell (ESC) regulation. During differentiation of ESCs, BRD4 expression is upregulated and its gene promoter becomes demethylated. Disruption of BRD4 expression in ESCs did not induce spontaneous differentiation but severely diminished hematoendothelial potential. Although BRD4 regulates c-Myc expression, our data show that the role of BRD4 in hematopoietic commitment is not exclusively mediated by c-Myc. Our results indicate that BRD4 is epigenetically regulated during hematopoietic differentiation ESCs in the context of a still unknown signaling pathway.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Sangue Fetal/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
18.
PLoS One ; 8(2): e56931, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451113

RESUMO

Epigenetic deregulation is considered a common hallmark of cancer. Nevertheless, recent publications have demonstrated its association with a large array of human diseases. Here, we explore the DNA methylation dynamics in blood samples during hematopoietic cell transplant and how they are affected by pathophysiological events during transplant evolution. We analyzed global DNA methylation in a cohort of 47 patients with allogenic transplant up to 12 months post-transplant. Recipients stably maintained the donor's global methylation levels after transplant. Nonetheless, global methylation is affected by chimerism status. Methylation analysis of promoters revealed that methylation in more than 200 genes is altered 1 month post-transplant when compared with non-pathological methylation levels in the donor. This number decreased by 6 months post-transplant. Finally, we analyzed methylation in IFN-γ, FASL, IL-10, and PRF1 and found association with the severity of the acute graft-versus-host disease. Our results provide strong evidence that methylation changes in blood are linked to underlying physiological events and demonstrate that DNA methylation analysis is a viable strategy for the study of transplantation and for development of biomarkers.


Assuntos
Metilação de DNA/genética , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Criança , Pré-Escolar , Proteína Ligante Fas/sangue , Feminino , Humanos , Lactente , Recém-Nascido , Interferon gama/sangue , Interleucina-10/sangue , Masculino , Pessoa de Meia-Idade , Perforina , Proteínas Citotóxicas Formadoras de Poros/sangue , Adulto Jovem
19.
J Mol Med (Berl) ; 91(8): 939-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23475283

RESUMO

The basic mechanisms underlying promoter DNA hypermethylation in cancer are still largely unknown. It has been proposed that the levels of the methyl donor group in DNA methylation reactions, S-adenosylmethionine (SAMe), might be involved. SAMe levels depend on the glycine-N-methyltransferase (GNMT), a one-carbon group methyltransferase, which catalyzes the conversion of SAMe to S-adenosylhomocysteine in hepatic cells. GNMT has been proposed to display tumor suppressor activity and to be frequently repressed in hepatocellular carcinoma (HCC). In this study, we show that GNMT shows aberrant DNA hypermethylation in some HCC cell lines and primary tumors (20 %). GNMT hypermethylation could contribute to gene repression and its restoration in cell lines displaying hypermethylation-reduced tumor growth in vitro. In agreement, human primary tumors expressing GNMT were of smaller size than tumors showing GNMT hypermethylation. Genome-wide analyses of gene promoter methylation identified 277 genes whose aberrant methylation in HCC was associated with GNMT methylation/expression. The findings in this manuscript indicate that DNA hypermethylation plays an important role in the repression of GNMT in HCC and that loss of GNMT in human HCC could promote the establishment of aberrant DNA methylation patterns at specific gene promoters.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA , Glicina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Repressão Epigenética , Glicina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo
20.
Cancer Res ; 73(1): 395-405, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23108143

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF2) is a cytokine produced in the hematologic compartment that may enhance antitumor immune responses, mainly by activation of dendritic cells. Here, we show that more than one-third of human colorectal tumors exhibit aberrant DNA demethylation of the GM-CSF promoter and overexpress the cytokine. Mouse engraftment experiments with autologous and homologous colon tumors engineered to repress the ectopic secretion of GM-CSF revealed the tumor-secreted GM-CSF to have an immune-associated antitumor effect. Unexpectedly, an immune-independent antitumor effect was observed that depended on the ectopic expression of GM-CSF receptor subunits by tumors. Cancer cells expressing GM-CSF and its receptor did not develop into tumors when autografted into immunocompetent mice. Similarly, 100% of the patients with human colon tumors that overexpressed GM-CSF and its receptor subunits survived at least 5 years after diagnosis. These data suggest that expression of GM-CSF and its receptor subunits by colon tumors may be a useful marker for prognosis as well as for patient stratification in cancer immunotherapy.


Assuntos
Neoplasias Colorretais/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Animais , Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/biossíntese , Análise Serial de Tecidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...